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ABSTRACT

Microstructure noise contaminates high-frequency estimates of asset price
volatility. Recent work has determined a preferred sampling frequency un-
der the assumption that the properties of noise are constant. Given the
sampling frequency, the high-frequency observations are given equal
weight. While convenient, constant weights are not necessarily efficient.
We use the Kalman filter to derive more efficient weights, for any given
sampling frequency. We demonstrate the efficacy of the procedure through
an extensive simulation exercise, showing that our filter compares favor-
ably to more traditional methods.

1. INTRODUCTION

Long-standing interest in asset price volatility, combined with recent devel-
opments in its estimation with high-frequency data, has provoked research
on the correct use of such data. In this paper we offer a framework for high-
frequency measurement of asset returns that provides a means of clarifying
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the impact of microstructure noise. Additionally, we provide Kalman filter-
based techniques for the efficient removal of such noise.

In a series of widely cited articles, Andersen, Bollerslev, Diebold, and
Fhens (2001 and Barndorif-Nielsen and Shephard (2002a.b) lay out a the-
ory of volatility estimation from high-frequency sample variances. Accord-
ing to the theory, realized volatility estimators can recover the volatility
defined by the quadratic variation of the semimartingale for prices. Realized
volatility estimators are constructed as the sums of squared returns, where
cach return is measured over a short interval of time.'

Realized volatility differs markedly from model-based estimation of vol-
atility. The widely used class of volatility models derived from the ARCH
specification of Engle (1982). place constraints on the parameters that cor-
respond to the interval over which returns are measured. Empirical analyses
of these models rarely support the constraints. In contrast, realized volatility
sstimators do not require a specified volatility model.

The asymptotic theory underpinning realized volatility estimators sug-
gests that the estimators should be constructed from the highest frequency
data available. One would then sum the squares of these high-frequency
returns, giving each squared return equal weight. In practice, however, very
high-frequency data is contaminated by notse arising from the microstruc-
ture of asset markets.

By now, it is widely accepted that market microstructure contamination
obscures high-frequency returns through several channels. For example,
iransaction returns exhibit negative serial correlation due to what Roll
(1984) terms the bid-ask bounce. When prices are observed at only regular
intervals. or are treated as if this were the case, measured returns exhibit
nonsynchronous trading biases as described in Cohen. Maier. Schwartz. and
Whitcomb (1978, 1979), and Atchison. Butler. and Simonds (19873, and Lo
and MacKinlay (1988, 1990). Because transaction prices are discrete and
tend to cluster at certain fractional values. prices exhibit rounding distor-
Gons as described in Gottlieb and Kalay (1985), Ball (1988), and Cho and
Frees (1988). Noise cannot be removed simply by working with the middle
of specialist quotes: while mid-quotes are Jess impacted by asynchronous
irade and the bid-ask bounce. mid-quotes are distorted by the inventory
needs of specialists and by the regulatory requirements that they face.”

Simulations by Andersen and Bollerslev (1998} and Andreou and Ghysels
(7002), among many others, illustrate the effects of finite sampling and
microstructure noise on volatility estimates under a variety of specifications.
Differences in model formulation and assumed frictions make drawing
robust conclusions about the effects of specific microstructure features
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difficult. Nevertheless, from the cited work, it is clear that microstructure
frictions, as a group, cannot be safely ignored.

Essentially, three strands of research exist that treat the problem of
microstructure noise in realized volatility estimation. The first attempts to
remove the noise with a simple moving-average filter as in Zhou (1996).
Andersen, Bollerslev, Diebold, and Ebens (2001) and Corsi, Zumbach,
Miiller. and Dacorogna (2001) select a sample frequency of five minutes
based on a volatility signature plots, and then apply a moving-average filter.
In contrast. Russell and Bandi (2004) work with an explicit model of
microstructure noise. Rather than filtering the data to reduce the noise, they
determine an optimal sampling frequency in the presence of noise. To do so,
they construct a mean-squared error criterion that trades off the increase in
precision against the corresponding increase in noise that arises as the sam-
pling frequency increases. Although squared returns are given equal weight
for a given asset, the optimal sampling interval that arises can vary across
assets. Ait-Sahalia, Mykland, and Zhang (2003) and Oomen (2004) offer
similar treatments. Finally, Hansen and Lunde (2004) derive a Newey and
West (1987) type correction to account for spurious correlations in observed
returns.

Theory suggests that noise volatility remains relatively constant. How-
ever, it is known that return volatility varies markedly. Thus, the relative
contributions of noise and actual returns toward observed returns vary.
During periods of high-return volatility, return innovations tend to dom-
inate the noise in size. In consequence, we propose a somewhat different
estimator in which the weight given to each return varies. Observed returns
during periods of high volatility are given larger weight.

Our argument has three parts. First, we frame a precise definition of noise
in terms of market microstructure theory. Second, we show how the Kalman
filter can be used to remove the microstructure noise. We pay particular
attention to how the variability of the optimal return weights depends on
high-frequency volatility. Third, we demonstrate the efficacy of the filter in
removing the noise.

2. MODEL

To formalize, consider a sequence of fixed intervals (five-minute periods, for
example) indexed by ¢. The log of the observed price at ¢ is p, =p, + 1,
where p, denotes true price and n, denotes microstructure noise. The
observed return is
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Fr=F g (h
where F, = p, —p,_| is the latent (true) return and #, = 1, = 1,y 1s the return
noise.

We employ assumptions typical of the realized volatility literature. Our
first assumption concerns the latent (true) price process.

Assumption 1. (Latent price process). The log true price process is a con-
tinuous local martingale. Specifically,

.
P = / ydwy
S

where w1s standard Brownian motion and the spot volatility process, v, is
a strictly positive cadlag process such that the quadratic variation (or
integrated volatility) process, V.., obeys

ot

Vo= / rds < oo
J

with probability one for all ¢

Assumptions about noise dynamics must be selected with care. Close
study of mnuostruuure noise reveals strong positive correlation at high
frequency.® The correlation declines sharply with the sampling frequency.
due to intervening transactions. To understand these effects. we discuss
three prominent sources of noise.

The bid-ask bounce. discussed by Roll (1984). arises because transactions
dmter at quotes rather than the true price. Hasbrouck and Ho (1987) show

hat this source of noise may be positively correlated as a result of clustered
trade at one quote (due to the break up of large block trades). However. the
positive noise correlation due to trade clustering nearly vanishes between
trades more than a few transactions apart. In a similar fashion. positive
noise correlation arising from the common rounding of adjacent transac-
tions. vanishes at lower sampling frequencies.

The nonsynchronous trading effect, discussed by Lo and MacKinlay
(1990). arises when transactions are relatively infrequent. If transactions are
infrequent relative to the measurement of prices at regular intervals. then
multiple price measurements refer to the same transaction. inducing positive
noise correlution. Again. the positive noise correlation vanishes as the sam-
pling frequency declines.

To determine the sampling frequency at which noise is uncorrelated.
Hasbrouck and Ho (1987) study a large sample of NYSE stocks. They find no
significant correlation for obserwlmnx sampled more than 10 transactions
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apart. Hansen und Lunde (2004) find supporting evidence in their recent
study of Dow Jones Industrial Average stocks. In consequence. we assume
that the sampling interval contains at least 10 transactions to justify treating
microstructure noise as an Lid. sequence.

Assumption 2. (Microstructure noise). The microstructure noise forms an
i.i.d. sequence of random variables each with mean zero and variance
(r;: < oo and independent of the latent return process.

We do not make any distributional assumptions about microstructure
noise. However, as the noise is composed of a sum of several largely in-
dependent features, and because these features tend to be symmetric. the
assumption of normally distributed noise may be a plausible approximation.
Consequently, we consider normally distributed microstructure noise in
Section 3.

Under Assumption 2. it is clear that return noise forms an MA(1) process
with a unit root. To determine the covariance structure of observed returns,
we assume that latent returns form a weakly stationary martingale.

Lemma L. If in addition to Assumption | and Assumption 2. r, forms a
weakly stationary process with unconditional mean zero and uncondi-
tional variance o7, then the autocovariance function of observed returns
obeys

o} +20; if k=0
Cot(Fy, Frog) = Mrri if k=1

0 if k=1
Moreover, the first-order autocorrelation is given by

p = U;
=T 2
or + 20y
For each day, which contains n intervals, define the following three volatility
measures. '

. The integrated volatility, V' = £7_ o7,

1
2. An infeasible estimator, constructed from latent returns, ¥ = X7, r7.

< B . i ~2 “ ~ - -
3. A feasible estimator, V' = X7_| 7/, where 7, = F, in the absence of noise.

To motivate the form of the feasible estimator. decompose the estimation
error as
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VeV TPy (

2)

The behavior of ¥ — F as a function of step length and the underlying
volatility process has been studied by Barndorff-Nielsen and Shephard
{2002a). If the step length is chosen (hence i is fixed). then this part of the
error is beyond the control of the researcher. Therefore, we focus on min-
imizing the mean squared error E(V ~ V)", where 7 = (Fo -+, Fr) and
T'=wn-J (Jis the number of days in the sample). It is well known that the
mean squared error is minimized by choosing

2 I

V=E(VF) =E er;[f' =Y E(r)F)

Thus, in order to minimize the effects of microstructure noise. we must
extract expected squared latent returns from observed returns. The effec-
tiveness with which the extraction can be achieved depends on the correct
treatment of the microstructure noise.

2.1 Kalman Filrer and Smoother

The Kalman filter provides a technique to separate (observed) contami-
nated returns into two components: the first corresponds to (latent) true
returns and the second to microstructure noise. To construct the filter. we
follow the notation in Hamilton (1994) {Harvey, 1989 also provides text-
book treatment). The state vector consists of latent variables. & =
(fr,,;/,,n,m,f}. The observation equation relates the state vector to observed
returns

fr=HY, (3)

where H' = (1, 1. —1). The state equation describes the dynamic evolution
of the state vector

St =FE + Ry, {4)

where ©) = (r,,n,) with covariance matrix
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and the coefficient matrices are

= 0 0 0 10
F=10 0 0] and R=1]0 1
01 0 0 0

The Kalman filter delivers the linear projection of the state vector &,,
given the sequence of observations {F,---,7). The Kalman smoother de-
livers the corresponding linear projection onto the extended sequence 7.
While these linear projections make efficient use of information, they may
have larger MSE’s than nonlinear projections. As conditional expectations
need not be linear projections, we distinguish between linear projections
and conditional expectations. Let E, represent linear projection onto F, =
{Fro Foors oo P 1) Ret & = Ed(E,) and let

P =E[(& - &

AN

A
=
v
e
L
-5
[T
-t
-
e
[
-
(I
-

represent the mean squared error matrices of these projections. For ex-
ample, the one-step-ahead mean squared error matrix P, is a diagonal
matrix with the first diagonal element equal to o7 and the second equal to
(7,2?. The third diagonal element we define as ¢, = Var(#,_y,_,). The ¢, are
determined though a recursion described below. Let u, denote the one-
step-ahead prediction error for the observed returns. Then it follows that
the variance of u,, which we denote by M,, is given by M, = H' Py, H =
0,2 -+ ai + .
The projections from the Kalman filter are given by the recursion

5

o~

f‘;;;(”f) = “f;: (Ft + ;Im;z-fl) (6)
o o
Mg = Tll; (Fe+71y1) (7

7(%% + )
M,

Crpp =
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The recursion and the boundary conditions i, = 0 and ¢ = (ri determine
the sequence of filtered returns and filtered noise.

R The projecti(ms from the Kalman smoother, which are the elements of
Sor = Ep(S)), are

2

a; 2 .

Fur(7) = Fu(07) = 5= (iyr = i) )
I f
¢ .
Iy e/ . Ay — (10
111 Ry + ‘712 N («"?:i! 'Im) (10)

Smoothed quantities exhibit smaller variances than their filtered counter-
parts. For example, if we let d,, = Var(#, 7). then it can be shown that

o} + o} o \°
d = “/( I ! - (63 ;ﬂ p ) (Copr —disr) (11
M !

al + ol + e

As is easily verified from their definitions, dy.y = ¢yyy. Consequently,
dr<cy, and, by an mduction argument, it tollows that ,<¢, for 1=
[.2,.... T, establishing that Var(n, ;) <Var(q,,) forr=12....T ~ 1.

The smoother estimates the latent returns as weighted averages of con-
temporaneous, lagged, and future observed returns. If variance is constant,
so that o7 = ¢’ for all . then the weights are nearly the same for all
smoothed returns. To see the point clearly, consider a numerical example. If
o7 = 10, O“Sf = 1, and T = 7, then, ignoring weights less than 0.001, we have
that

Py == 0.006F; + 0.0709F5 + 0.8452F; + 0.0709F5 4 0.0067,
while
Pz = 0.00597 + 0.07097> + 0.8452F; + 0.070974 -+ 0.00675.

Thus. an almost identical weighting scheme determines the third and fourth
optimally estimated latent returns. For large samples. the weights are even
more consistent. Except for a few returns at the beginning and end of the
sample. the assumption of constant volatility leads to estimates of latent
returns that are essentially a weighted average of the observed returns where
the weights, for all practical purposes, are constants.

If. as 1s almost certainly the case in practice, latent returns do not exhibit
constant volatility, then the optimal weights for estimating latent returns in
(6)F-(8) and (9){10) are not constant. Instead, during periods of high vol-
atility, the optimal weights are larger for the currently observed return, and
lower for the other returns.

et

e ST

Tt

B e e s i

B

I
]
¥
I

Noise Reduced Realized Volatili,

With the estimated latent ret
realized volatility by X7, 7/
filtering is a linear transform
biased estimator of E(r7[F). |
determined in the normal cor
the bias E(r,2 ~#7 ). the pr

EU\F’ B ’ﬁ‘r}zjt = E

Thus. the bias equals the (1,

Fur
We find that the bias 1s

f),((r’,z) =

where #, (¢7) (the bias of th

f7 2

by (o7

Recall that ¢, is the element
and d, is the corresponding
As shown in (11), for 1< Tt
the filtered estimator.” As ¢
smaller than the bias of the
smoothed estimator in whal

To determine the magnitu
o) = a7 (constant volatility)

In accord with intuition, t
variance and an increasing f
the bias is 15 percent of the
expected squared noise tet
o> /@y = 0, then the bias is
inates. then the bias is near




|
_'".
I-n

i §
s

Noise Reduced Realized Volarility: A Kalman Filter Approach 219

2.2. Bias

With the estimated latent retums For = E(r,lr) it seems natuml to estimate
realized volatility by 27 r,.r (note. 7, stands for (r,.r) ). Yet, because
filtering is a linear transformation, Whll(, squaring 1s not, r’ 15 a downward
biased estimator of E(r?|F). Fortunately, the size and dxrecnon of the bias is
determined in the normal course of constructing the Kalman smoother. For
the bias E(rf - ;'}Zg'r , the properties of projection mappings imply*

EHH - fir)j N E[ET(F’B = 2grrc+ ’:fif” = E[f‘}z - PiT} (12)

Thus, the bias equals the (1, 1) element of the mean squared error matrix for

Fur-
We find that the bias is

74 o ay :
hi(o;) = b{((}';) - (;}3‘;*‘”) (Crpr = dipy) (13)
where #, (o2} (the bias of the filtered return ) is
] At
W (a}) = o7 | "5 14
f(r!) (T! (J;‘+O'£+(‘,~;> ( }

Recall that ¢, 1s the element of the variance for the filtered prediction of , _,
and d, is the corresponding variance element for the smoothed prediction.
As shown in (11), for t< T the smoothed estimator has lower variance than
the filtered estimator.” As a result, the bias of the smoothed estimator is
smaller than the bias of the filtered estimator, and so we concentrate on the
smoothed estimator in what follows.

To determine the magnitude of the bias, consider the simple case in which
o7 = o7 (constant volatility). The bias, b,, is well approximated by

l
(If | W
1 +40; /02
V /
In accord with intuition, the bias is a decreasing function of the return
variance and an increasing function of the noise variance. If o2 /a' = [, then

the bias is 15 percent of the return variance and 50 percent Idrger than the

, expected squared noise term.® If the noise variance dominates. so that

az /cr“ > 0, then the bias is approximately 7. If the return variance dom-
inates, then the bias is near zero.
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3. MULTIVARIATE NORMAL APPROACH

To analyze the multivariate normal case, it is convenient to work in vector
- N 14
form. Let r=(ry, r2, -+ ,rr) and y = (no, my. ... ,n7) so that

F=r-+4 By

Here B is a selection matrix with first row [~1, —1, 0, - ... 0]. The covar-
iance matrix of 7 is A = diag(s?). The Kalman smoother equations (in vec-
tor form) are

f-xA(A+a,§BB')"; and z:agn(l+o§B’A“‘B)“‘B’ (15)

From Assumption 1, it follows that r,o? ~ N (0,02). If we extend the as-

sumption to
r A0
n ~Nr) 0, 0 O’i I

then it is simple to derive the conditional distribution of Flr. Specifically,
rlf ~ Np(f, %) (16)

where r and X are identical to the quantites from the Kalman smoother (15).

Under the assumption of joint normality 7 = E(r|F), so, the smoothed
estimator is the conditional expectation rather than simply the optimal lin-
ear projection. Similarly, £ = Var(r|f) rather than simply the MSE matrix of
the linear projection. This is especially useful for understanding the source
of the bias that arises from squaring filtered returns. Here

Var(r ) = E(7 ) — EX0, ) U7

The optimal estimator E(r;[F) exceeds the square of the optimal estimator
for latent returns E*(r,|F). The correction term Var(r,[f) does more than
simply correct for the bias. Because the correction term corresponds to the
conditional covariance matrix of r given the observed returns. the correction
delivers the conditional expectation of squared returns. In consequence, we
are able to form an optimal nonlinear estimator from an optimal linear
estimator as

E(r]IF) = EX(r/|E) + Var(r,|f)

i SOT I T S
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4. IMPLEMENTATION

The above analysis, in which it is assumed that {7} and o, are known,
suggests the use of the bias-corrected estimator
. n
P(at) =3 [7r(ed) + bilad)]
=1
To implement the method, we need estimators of {7} and a;.

If the latent return variance is assumed constant, then 07 = o and the
bias- wrrected estimator V( a?) is a function only of ¢7 and a; me Lem-
ma |, the first two autocovariances of the observed returns senea are suf-
ﬁcmnt for determining the variance of the noise and the expected variance of
the true returns. (If one wishes to make further distributional assumptions,
then ML estimators may be used in place of the method of moments es-
timators.) Andersen et al. (2001) employ an MA(1) estimator that, while
similar to V( 2), does not contain smoothed estimates and makes no bias
correction.

, For the case in which the return variances are not constant, we begin with

Fur(é ) and b, (6 ) We then estimate the time-varying variance with a roll-
mg vnndaw.7

1 412

fir =35 2. (Fr(8) +hu(3?)) "
h=t—12

The estimated time- Vdrvmg variances from (18) together with & j yield
(6 ) from (9) and b,(57 ) from (13).

For the case of constant variance, laws of large numbers ensure the con-
sistency of (‘r2 and 52 Similar results are derived for ML estimators in Ait-
Sahalia et al. (’003) To establish consistency if the return variance is not
constant, it seems natural to specify a dynamic structure for {s?}. Rather
than focus on this problem. we seek to recover latent realized volatility with
a general purpose filter that minimizes mean squared error.

5. PERFORMANCE

To test the performance of the suggested filter against realistic scenarios, we
use a model for the simulated latent returns that is consistent with the return
hehavior of the S&P 500 stock index. A popular special case of Assump-
tion | is
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dp, = o,dw,
do? = 0w — a,)dt + (220)! 2 dw,, (1)

where w, and w,, are independent Brownian motion. Drost and Werker
(1996, Corollary 3.2) provide the map between (19) and the (discrete)
GARCH(1.1),

Pt = Pretym = Tompp = Omys SOy
2 2 2 .
Tt = Pmy + Lom oy + BunyOomy.st jm (20)

where i, is (for the purposes of simulation) i.i.d. N(0,1). Andreou and
Ghysels (2002) find that 5-minute returns from the S&P 500 index are well
approximated by the values

by = 0.0004, iy = 0.0037, ) = 0.9963. @1

These parameters imply an unconditional return variance of 0% = 7.9 basis
points over the 5-minute interval. While this unconditional variance is high
(daily estimates of return variance are roughly eight basis points), an ap-
propriate rescaling by multiplying by 1/78 results in such small parameter
values that simulation is difficult. As the relative mean squared error meas-
urements that we report are invariant to such scaling, we follow Andreou
and Ghysels and use the values in (21).

From (20) and (21) we simulate latent returns, r,. We construct observed
returns as 7 = r, +#, — #,., where 5, is generated as an i.id. N{0, ai
random variable. To determine the noise variance, we invert the formula for
p in Lemma | to obtain

N -
(!; =] 0 —ng O’f
Hasbrouck and Ho (1987) report estimates of p between —.4 and —.1, so we
allow p to take the values [—.4, —.3,—.2, —.1]. As decreasing the value of p
increases o*%, the resultant values of noise variance vary from cr;; =1 ({for
p=—.1)to o} =158 (for p = ~.4).

To mirror trading days on the NYSE, which are 6.5 hours long, each
simulated day contains 78 S-minute returns. We generate 10,000 trading
days, a span that roughly corresponds to 50 years. For each day, j, we
construct the latent realized volatility

78j
Vo= T
f==d - 1Y7841
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the feasible bias-corrected realized volatility estimator

74j )
i) = Y [Fe(e) ()]

-1 78 41

and the infeasible bias-corrected estimator ¥ (02)

To compare this filter to methods that assume constant return variance,
such as the MA(1) filter mentioned above, we construct V (o‘ ). To deter-
mine the gains from smoothing, we also construct the estimator based on
filtered (rather than smoothed) quantites

78/

HCOEES S ACARTACH]

t=(j—1)7

where 67, is obtained from (18) with "ku( 2) and b, (52) in place of 7 r,‘ +(80)

1t
and by (a,), respectively. Finally, for completeness, we construct L(j (a,).

To judge the quality of the realized volatility estimators, we measure the
mean squared error (MSE) of each estimator relative to the infeasible (op-
timal) estimator. For example, the relative MSE for V(O‘,IT is

13000

VSE {;‘/(33 ﬂ E (?f‘ ?,i(?f%n'))z
SE[V (o

@l ) !(Xm(?;“f’;(af))z

j=1

In Table I, we present the relative etficiency calculations. Regardless of
the degree of noise variance, or indeed of the decision to smooth, the gain
from estimating a time-varying return variance is substantial. For the case
with the smallest noise variance, the relative MSE for the smoothed esti-
mator is reduced by more than half (from 3.5 to 1.4). As one would expect,

Table 1. Relative Efficiency.

,fi Constant Variance Time-Varying Variance
Vi) Vi) VIt VEt)
15.8 8.4 6.7 5.7 4.7
5.9 7.6 6.0 39 :
2.6 6.1 5.1 24 RA)
1.0 3.9 3.5 1.5 |
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increasing the noise variance renders the estimation problem more difficult,
yet even for the highest noise variance the relative MSE for the smoothed
estimator is substantially reduced (from 6.7 (o 4.7). Moreover, while
smoothing always leads to an efficiency gain, the magnitude of the efficiency
gain resulting from smoothing is dominated by efficiency gain from allowing
for time-varying volatility.

To determine the impact of diurnal patterns, we generate time-varying

volatility that mirrors the U-shape pattern often observed in empirical re-

turns. To do so. we construct a new sequence of return variances {(f;:j)[}:

RES 2 P 3‘7{ ‘
Time = Ohm, L 1+ 1/3c0s ?gl

where a{z,m‘, is obtained from (20). Note that with the cyclic component, the
expected variance doubles between the diurnal peak and trough. This proc-
¢s$s mimics the U-shape pattern as the maximum of the cosine term to
corresponds to the beginning and ending of each day.

In Table 2, we find that the relative MSE measurements are surprisingly
robust to the presence of diurnal patterns. When noise variance is about an
order of magnitude smaller than the expected innovation variance {(when
rri = 1.0}, the MSE of the realized volatility estimator is about 4 percent
larger when based on filtered returns. When noise variance is roughly twice
as large as the expected innovation variance (when rr;: = 15.8), the flter-
based mean squared error 18 about 10 percent larger. Larger gains are
achieved by the estimator based on the rolling volatility proxy, especially
when noise volatility is relatively small. The mean squared errors based on
the naive estimators are between 40 and 160 percent larger than corre-
sponding mean squared errors based on the volatility proxy. The improve-
ments from smoothing, relative to filtering, are shown in the last column.

Table 2. Relative Efficiency wi'trh a Diurnal Pattern.

{;f: Constant Variance Time-Va rying Variance
——
Viigs) Via7y FIEL) 1)

158 8.1 6.5 5.5 46
5.9 7.4 5.9 3.8 13
2.6 6.0 5.0 28y 22
1o 19 3.5
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Although currently used filters vary widely, we are aware of none that
exploit the gains available from either smoothing or from the used of a high-
frequency volatility proxy. Most filtering methods in uses are similar to the
filtered naive estimator. Notice that the mean squared errors of the filtered
naive estimators are more than double those of the smoothed estimators
based on our proposed smoothed estimator based on the volatility proxy.

6. CONCLUSIONS

This article applies market microstructure theory to the problem of remov-
ing noise from a popular volatility estimate. The theory suggests that a
Kalman smoother can optimally extract the latent squared returns, which
are required for determining realized volatility from their noisy observable
counterparts. However, the correct specification of the filter requires knowl-
edge of a latent stochastic volatility state variable, and is therefore infea-
sible. We show that a feasible Kalman smoothing algorithm based on a
simple rolling regression proxy for high-frequency volatility can improve
realized volatility estimates. In simulations, the algorithm substantially re-
duces the mean squared error of realized volatility estimators even in the
presence of strong diurnal patterns. The broad conclusion is that realized
volatility estimators can be improved in an obvious way, by smoothing
instead of merely filtering the data, and in a less obvious way, by bias
correcting and using a straightforward proxy of latent high-frequency
volatility.

NOTES

1. Andersen, Bollerslev, and Diebold (2005) provides a survey of both theory and
empirics for realized volatility.

2. Surveys by O'Hara (1995), Hasbrouck (1996), Campbell, Lo, & MacKinlay
(1997), and Madhavan (2000) document these and other microstructure frictions.

3. Noise outcomes of adjacent price measurements are almost perfectly correlated
when no transaction intervenes (they are not perfectly correlated because, although
measured price remains constant in the absence of new transactions, the latent true
price changes through time).

1. Brockwell and Davis (1987, Proposition 2.3.2).

5 If ¢ = T. then the smoothed estimator is identical to the filtered estimator.

6. The bias of the filtered estimator is approximately —2por (recall p<0).

7. The rolling window width of 24 corresponds to two hours, which balances bias
and variance in the presence of diurnal features.
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